3-Monochloropropane-1,2-diol (3-MCPD)

Rajpal S. Tomar, Ph.D.

Feng C. Tsai, Ph.D.

Martha S. Sandy, Ph.D.

Cancer Toxicology and Epidemiology Section Reproductive and Cancer Hazard Assessment Branch

Occurrence and Use

- Used as a dye intermediate, solvent for cellulose acetate, and to lower the freezing point of dynamite
- Registered as a restricted use rodenticide
- Formed in foods during processing, cooking and storage
- Found in a variety of foods containing acid-hydrolyzed vegetable protein (HVP) and some foods without acid-HVP
- Detected in packaging materials and drinking water

Carcinogenicity Studies in Animals

Studies in mice:

- Topical application in Swiss mice (1)
- Subcutaneous injection (s.c.) in Swiss mice (1)
- Drinking water studies B6C3F₁ mice (2)

Studies in rats:

- Oral gavage studies Sprague-Dawley rats (2)
- Drinking water studies Fischer rats (2);
 Sprague-Dawley rats (2)

19-Month Studies in Mice

(Van Durren *et al.*, 1974)

- Dermal study (2 mg, 3/week) in female Swiss mice (n = 50)
 - No treatment-related skin tumors

- S.C. injection study (1 mg, 1/week) in female Swiss mice (n = 50)
 - No treatment-related neoplastic findings

104-Week Studies in Mice

(Jeong et al., 2010)

- Male and female B6C3F₁ mice (n = 50)
- Drinking water (0, 30, 100, 300/200 ppm)
 - High-dose mice had significantly decreased body weight, food and water consumption
 - No treatment-related neoplastic findings

Gavage Studies in Rats

(Weisburger et al., 1981)

- Male and female Sprague-Dawley rats (treated: n = 26; controls: n = 20)
- 30/35 or 60/70 mg/kg_{bw}, 2/week for 72 weeks;
 observed for additional 32 weeks
 - No treatment-related neoplastic findings

Drinking water studies in Fischer rats

(Sunahara et al., 1993)

	3-MCPD Concentration (ppm)				Trend test			
Organ and Lesion	0	20	100	500	p-value			
Male: Testis								
Leydig cell adenoma	38/50	43/50	50/50***	47/50*	≤0.01			
Leydig cell carcinoma	0/50	0/50	0/50	3/50	≤0.001			
Male: Mammary gland								
Fibroadenoma	0/45	0/48	2/47	10/49***	≤0.0001			
Adenoma	0/45	0/48	1/47	1/49	NS			
Adenocarcinoma	0/45	0/48	1/47	1/49	NS			

Drinking water studies in Fischer rats

(Sunahara et al., 1993) (continued)

Organ and Lesion	3-MC	Trend test					
	0	20	100	500	p-value		
Male: Kidney							
Tubular adenoma	0/50	0/50	1/50	5/50*	≤0.01		
Female: Kidney							
Tubular adenoma	0/50	1/50	0/50	9/50**	≤0.0001		

Drinking water studies in S-D rats

(Cho et al., 2008)

	3-MCPD concentration (ppm)				Trend test	
Organ and Lesion	0	25	100	400	p- values	
Male: Testis Leydig cell tumors	1/50	1/50	4/50	14/50****	≤ 0.001	
Male: Kidney						
Tubular adenoma	0/50	0/50	1/50	4/50	≤ 0.01	
Tubular carcinoma	0/50	0/50	0/50	5/50**	≤ 0.001	
Tubular adenoma and carcinoma (combined)	0/50	0/50	1/50	7/50***	≤ 0.0001	
Female: Kidney						
Tubular adenoma	0/50	0/50	1/50	6/50**	≤0.001	
Tubular carcinoma	1/50	0/50	1/50	3/50	=0.06	
Tubular adenoma and carcinoma (combined)	1/50	0/50	2/50	9/50***	≤0.0001	

Proposed Metabolic Pathways for 3-MCPD

In vitro Genotoxicity

- Positive in
 - Salmonella typhimurium reverse mutation assay
 - TA 1535 and TA 100 (+/- S9) base-pair substitution
 - TA 98 (-S9) frameshift mutation
 - S. plombe forward mutating assay (-S9)
 - Gene mutation in mouse lymphoma cells (+S9)
 - SCEs in Chinese hamster V79 cells (+/- S9)
 - DNA damage in CHO cells (-S9)
- Negative in
 - E. coli (TN930, TN1080 and WP2) (+/- S9)
 - DNA synthesis inhibition assay in HeLa cells (+/- S9)

In vivo Genotoxicity

- Negative in various in vivo assays
 - Drosophila somatic mutation assay (Wing spot)
 - Dominant lethal mutation assay in male mice
 - Bone marrow micronucleus assay in rats and mice
 - Unscheduled DNA synthesis in liver cells of male rats
 - DNA damage in various tissues and blood cells of male rats

Immune System Effects

In Vivo (mice)

- ↓ absolute and relative thymus weights
- ↓ natural killer cell activity
- ↓ antibody production to sheep red blood cells
- Suggests reduced capacity for cell lysis and tumor surveillance

In Vitro (mice)

- proliferative response to con A, anti-CD3 antibody, and lipopolysaccharides
- ↓ spleen cell production of IFN-gamma, IL-10, and IL-4
- macrophage production of TNF-alpha and NO (at noncytotoxic doses)
- Suggests impaired T & B cell function, altered regulation of inflammatory response

MALIGNANT TRANSFORMATION OF MOUSE M2 FIBROBLASTS

	3-MCPD (µg/mL)							
	Control	100	250	500	100	2000		
Number of transformed foci/number of treated dishes	0/24	2/27	10/25 p<0.0001	14/27 p<0.0001	4/26	0/22		

Structure activity comparison

1,2,3-Trichloropropane

Tris (2,3,-dibromopropylphosphate)

2,3-Dibromo-1-propanol

Epichlorohydrin

Tris (1,3-dichloro-2-propyl) phosphate

Dibromochloropropane (DBCP)

1,3-Dichloro-2-propanol

Possible Mechanisms of Action

- Genotoxicity
- Inhibition of glycolysis
 - Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibition
 - ➤ Regulation of DNA repair, cell death, cell cycle progression, mRNA stability
- Kidney toxicity
- Immune effects
- Hormonal effects

Summary of Evidence

■Animal evidence for carcinogenicity

- > Tumors in both sexes of two strains of rats
- > Tumors at multiple sites in two strains of arrats

Kidney tumors

- S-D rats: ↑ combined adenoma & carcinoma in ♀ & ♂
 - o Rare
 - Early onset in
- Fischer rats: ↑ adenoma in ♀ & ♂

Mammary tumors

- Fischer rats: ↑ fibroadenoma; adenoma and adenocarcinoma observed in mid- & high-dose
 - Uncommon

Leydig cell tumors

- Fischer rats: ↑ combined adenoma & carcinoma
 - S-D rats:
 † in Leydig cell 'tumors'

Summary of Evidence (continued)

- ☐ In vitro genotoxicity in a variety of systems
- Malignant transformation of cells
- Metabolism to glycidol, a genotoxic carcinogen
- Structurally similar to six carcinogens

